Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int. microbiol ; 26(4): 757-764, Nov. 2023. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-227466

RESUMO

Objective: The present study aimed to explore if bovine parvovirus (BPV) impacts beta interferon (IFN-β) production and to reveal further molecular mechanism of BPV immune escape. Method: The pCMV-Myc-BPV-VP1 recombinant plasmid was verified with both double-enzyme digestion and sequence. HEK 293 T cells were transfected with this recombinant protein and then infected with the vesicular stomatitis virus (VSV). Expression levels of IFN-β mRNA were detected using qPCR. Results: The expression level of BPV VP1 mRNA in the pCMV-Myc-BPV-VP1 group was significantly higher than those of the untreated group (UT) and pCMV-Myc vector group. BPV virus copies in bovine turbinate (BT) cells of the BPV-VP1 group were raised (P < 0.05) with an increment of 5.8 × 104. Expression levels of IFN-β mRNA of the BPV VP1 group in HEK 293 T cells were decreased (P < 0.01). Following treatment of TBK1 and IRF3(5D), IFN-β expression levels in HEK 293 T cells were depressed. Additionally, expression levels of TBK1, IRF3(5D), MDA5, and MAVS were less than those of the flag empty vector, respectively. Conclusion: pCMV-Myc-BPV-VP1 could heighten transcription levels of VP1 protein in BT cells, promote BPV proliferation, and ascend the production of IFN-β. Overexpression of pCMV-Myc-BPV-VP decreased IFN-β mRNA expression in HEK 293 T cells and inhibited IFN-β production induced by TBK1 and IRF3(5D). Furthermore, BPV VP1 obviously declined expression levels of TBK1, IRF3(5D), MDA5, and MAVS in the RIG-I-like receptor (RLR) pathway. Our findings revealed a novel mechanism evolved by BPV VP1 to inhibit type I IFN production and provided a solid scientific basis into the immunosuppression of BPV.(AU)


Assuntos
Humanos , Interferon beta , Bocavirus/imunologia , Microbiologia , Técnicas Microbiológicas , Estomatite Vesicular
2.
Int Microbiol ; 26(4): 757-764, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36703013

RESUMO

OBJECTIVE: The present study aimed to explore if bovine parvovirus (BPV) impacts beta interferon (IFN-ß) production and to reveal further molecular mechanism of BPV immune escape. METHOD: The pCMV-Myc-BPV-VP1 recombinant plasmid was verified with both double-enzyme digestion and sequence. HEK 293 T cells were transfected with this recombinant protein and then infected with the vesicular stomatitis virus (VSV). Expression levels of IFN-ß mRNA were detected using qPCR. RESULTS: The expression level of BPV VP1 mRNA in the pCMV-Myc-BPV-VP1 group was significantly higher than those of the untreated group (UT) and pCMV-Myc vector group. BPV virus copies in bovine turbinate (BT) cells of the BPV-VP1 group were raised (P < 0.05) with an increment of 5.8 × 104. Expression levels of IFN-ß mRNA of the BPV VP1 group in HEK 293 T cells were decreased (P < 0.01). Following treatment of TBK1 and IRF3(5D), IFN-ß expression levels in HEK 293 T cells were depressed. Additionally, expression levels of TBK1, IRF3(5D), MDA5, and MAVS were less than those of the flag empty vector, respectively. CONCLUSION: pCMV-Myc-BPV-VP1 could heighten transcription levels of VP1 protein in BT cells, promote BPV proliferation, and ascend the production of IFN-ß. Overexpression of pCMV-Myc-BPV-VP decreased IFN-ß mRNA expression in HEK 293 T cells and inhibited IFN-ß production induced by TBK1 and IRF3(5D). Furthermore, BPV VP1 obviously declined expression levels of TBK1, IRF3(5D), MDA5, and MAVS in the RIG-I-like receptor (RLR) pathway. Our findings revealed a novel mechanism evolved by BPV VP1 to inhibit type I IFN production and provided a solid scientific basis into the immunosuppression of BPV.


Assuntos
Bocavirus , Humanos , Bocavirus/genética , Bocavirus/metabolismo , Células HEK293 , Expressão Gênica , Interferon beta/genética , Interferon beta/metabolismo , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...